II B. TECH II SEMESTER REGULAR EXAMINATIONS, AUGUST 2021 **APPLIED THERMODYNAMICS**

(Mechanical Engineering)

[6M] ston
[6M] ston
[6M] ston
[6M] ston
ston
[6M]
ycle [6M]
[6M]
Find [6M] ston
[6M]
[6M]
roke [6M] ions
ater, [6M] 0 ⁰ C. lied,
neat [6M]
[6M]
is of [6M]

R19

UNIT - IV

- 7. a) Explain the closed cycle gas turbine, various components operational process [6M] with neat diagram, also show P-v diagram and T-s diagram,
 - b) A simple closed gas turbine plant receives air at 1 bar and 15^oC, and compresses [6M] it to 5 bar and then heats it to 800^oC in the heating chamber, The hot air expands in a turbine back to 1 bar. Calculate the power developed per Kg of air supplied per second. Take Cp= 1kJ/kg K.

(OR)

8.	a)	Derive an equation for therma	ll efficiency of Gas turbine plant.	[6M]
----	----	-------------------------------	-------------------------------------	------

b) Describe a gas turbine plant with Intercooler with neat schematic diagram, [6M] T-s diagram and show the net work done.

UNIT - V

- 9. a) Derive an equation for work done by a single stage reciprocating air compressor [6M] when air compressed isothermally, also show the P-v diagram and T-s diagram.
 - b) Explain multi stage compression and state the advantages of multi stage [6M] compression.

(OR)

- 10. a) A single stage reciprocating air compressor is required to compress 1kg of air [6M] from 1 bar to 4 bar. Initial temperature is 27⁰C. compare the work requirement in cases of Isothermal and Isentropic compression.
 - b) Distinguish between Reciprocating and Rotary air compressors. [6M]

* * * * *